Why?

You can solve some equations that arise in the real world by isolating a variable. You can use this method to solve the equation

$$
400+\left(1 \frac{1}{2}\right)(10) x=460
$$

to determine the number of hours of overtime you need to work to earn $\$ 460$ per week, at an hourly rate of $\$ 10$, with overtime being time and a half.

What Do You Already Know?

Give two examples of pairs of equivalent equations.
Use the Addition Property of Equality to create an equation that is equivalent to $6+3 x=5$.
Use the Multiplication Property of Equality to create an equation that is equivalent to $-3(x-5)=6$.
Use the Distributive Property and the Substitution Principle to create an equation that is equivalent to $5 x+2(3-x)=10$.

When you complete this activity, you should be able to:

1. Solve a linear equation using the Isolate the Variable Methodology
2. Solve a literal equation
3. Use the Solving Linear Equations Methodology to find the solution to a linear equation involving fractions and parentheses

Building Mathematical Language

Key Concepts

Some equations have no solutions and some equations have an infinite number of solutions. These occur when the variable can be totally eliminated from the equation. The resulting equation will state that two numbers are equal. If the two numbers are different, then the equation is never true and there are no solutions to the original equation. If the two numbers are the same, the equation is always true and there are an infinite number of solutions.

A literal equation is an equation with more than one variable. Engineers, scientists, and government policy makers use these equations because they provide information about relationships between real world quantities such as population and the square feet of retail space required.

Limitation: When dealing with literal equations, you must take care to understand the constraints on the variables in the equations. Assuming that literal equations are true for all values of their variables can cause safety issues in energy plants, on planes, and in factories.

Isolating a Variable

Isolating a variable in an equation with no fractions or parentheses, and where the variable appears only to the first power, is useful in solving an equation.

Limitation/Caution: If a term has the specified variable in the denominator, then problems can occur (we will see this later when we work with rational equations).

Example 1

Isolate x : $6 x-5=7+2 x$

Example 2

Isolate x : $6 x+5-x=3 x+9$

Your Turn

Isolate a : $2 a+4 a=7 a+2-3 a$

Steps

Discussion

1 Rewrite the equation
Using the Equality Properties, rewrite the equation so that all the terms of your chosen variable are on one side of the equation and all the other terms on the other side of the equation.

2 Simplify the expressions \quad Simplify the expressions on both sides of the equation.

x	$4 x=12$	$\begin{aligned} & N \\ & \times \\ & \hline \end{aligned}$	$\begin{gathered} 5 x-3 x=4 \\ 2 x=4 \end{gathered}$

3 Rewrite the equation
Use the Distributive Property to rewrite the equation so that the chosen variable is a factor.

4 Divide by the coefficient	$\begin{array}{l}\text { Divide both sides of the equation by the coefficient of the chosen } \\ \text { variable. }\end{array}$

$$
\begin{gathered}
2 x=4 \\
x=2
\end{gathered}
$$

Steps	Discussion
5 Validate	Substitute the value of the isolated variable in the equation to verify that the chosen variable has been isolated correctly.

$$
\begin{gathered}
6 x-5=7+2 x \\
6(3)-5 \stackrel{?}{=} 7+2(3) \\
18-5 \stackrel{?}{=} 7+6 \\
13=13
\end{gathered}
$$

$$
\begin{aligned}
6 x+5-x & =3 x+9 \\
6(2)+5-2 & \stackrel{?}{=} 3(2)+9 \\
12+5-2 & \stackrel{?}{=} 6+9 \\
17-2 & \stackrel{?}{=} 15 \\
15= & 15
\end{aligned}
$$

Isolate $y^{2}: 3 y^{2}-4 a x=7 a x-5+a y^{2}$

Step 1 Rewrite the equation
$3 y^{2}-a y^{2}=7 a x-5+4 a x$
Step 2 Simplify

$$
3 y^{2}-a y^{2}=11 a x-5
$$

Step 3 Rewrite with chosen variable $\quad y^{2}(3-a)=11 a x-5$ as a factor

Step 4 Divide by the coefficient

$$
\begin{aligned}
& \frac{y^{2}(3-a)}{(3-a)}=\frac{11 a x-5}{(3-a)} \\
& y^{2}=\frac{11 a x-5}{3-a}
\end{aligned}
$$

Step 5 Validate

$$
\begin{aligned}
& 3 y^{2}-4 a x=7 a x-5+a y^{2} \\
& 3\left(\frac{11 a x-5}{3-a}\right)-4 a x=7 a x-5+a\left(\frac{11 a x-5}{3-a}\right) \\
& \frac{33 a x-15}{3-a}-4 a x\left(\frac{3-a}{3-a}\right)=7 a x\left(\frac{3-a}{3-a}\right)-5\left(\frac{3-a}{3-a}\right)+\frac{11 a^{2} x-5 a}{3-a} \\
& \frac{33 a x-15-12 a x+4 a^{2} x}{3-a}=\frac{21 a x-7 a^{2} x-15+5 a+11 a^{2} x-5 a}{3-a} \\
& \frac{4 a^{2} x+21 a x-15}{3-a}=\frac{4 a^{2} x+21 a x-15}{3-a}
\end{aligned}
$$

Methodology

Clearing Fractions

Equations without denominators (fractions) are easier to work with.
Limitation: Some denominators with variables can cause problems.

Example 1

Clear the fractions:

$$
\frac{x}{3}+\frac{2 x}{5}=4
$$

Your Turn

$$
\frac{3 a}{4}+\frac{a^{2}}{5}=3
$$

Steps	Discussion
1 Determine LCD	Determine the LCD of all the denominators of the equation.

$$
\frac{x}{3}+\frac{2 x}{5}=4
$$

The LCD is $3 \cdot 5$

Multiply both sides of the equation by the LCD of the denominators in the equation and simplify.

$$
\begin{aligned}
& 15\left(\frac{x}{3}+\frac{2 x}{5}\right)=15(4) \\
& 15\left(\frac{x}{3}\right)+15\left(\frac{2 x}{5}\right)=60 \\
& \frac{15 x}{3}+\frac{30 x}{5}=60 \\
& 5 x+6 x=60
\end{aligned}
$$

Methodology

Solving a Linear Equation

A linear equation in one variable defines possible values for that variable, and can be used to find these values. Linear equations that state a relationship between two or more variables can be solved to determine the relationship one variable has to the other variable(s).

Limitation/Caution: Although some relationships defined by data appear linear for a range of values of the variable(s), assuming that a relationship is linear can lead to errors.

Solve the linear equation for the designated variable:

Example 1

for $x: 2(x-3)=4 x-2$

Example 2

for a : $2 a-\frac{5}{3} a-2=3(2-a)-\frac{1}{2}$

Your Turn

for $t: 6-3(t-5)=2 t+11$

Steps	Discussion
1 Choose the variable to solve for	Note the variables and constants and select which variable to solve for.

வ	The variable is x.	N	The variable is a.	c $\frac{3}{3}$ $\frac{1}{2}$ 0

| 2 Clear parentheses | All variable occurrences should be outside parentheses; carry out any |
| :--- | :--- | operations required to clear parentheses.

3 Clear fractions \quad Multiply both sides of the equation by the LCD of the denominators and simplify (see the Methodology for Clearing Fractions earlier n this section).

Steps

4 Simplify

Discussion

Simplify the expressions on both sides of the equation, combining like terms whenever possible.

-	Simplified	N	$12 a-10 a-12=33-18 a$	

| 5 Isolate the variable | Rewrite so that all instances of the chosen variable are on one side, |
| :--- | :--- | simplify, and rewrite the equation so that the chosen variable is a factor. Finally, divide by any coefficient (see the Methodology for Isolating a Variable earlier in this section).

	$2 x-6+6=4 x-2+6$		$(12 a)-(10 a)-12=33-(18 a)$
	$2 x=4 x+4$		$12 a-10 a+18 a=33+12$
	$2 x-4 x=4 x-4 x+4$	N	$20 a=45$
자	$-2 x=4$	セ	$a=\frac{45}{20}$
	$x=-2$		20
			$a=\frac{9}{4}$

| 6 Validate | Substitute the solution into the original equation to check that both |
| :--- | :--- | sides of the equation are the same.

ㄸ	$\begin{aligned} & 2(x-3)=4 x-2 \\ & 2(-2-3) \stackrel{?}{=} 4(-2)-2 \\ & 2(-5) \stackrel{?}{=}-8-2 \\ & -10=-10 \end{aligned}$	N	$\begin{aligned} 2 a-\frac{5}{3} a-2 & =3(2-a)-\frac{1}{2} \\ 2\left(\frac{9}{4}\right)-\frac{5}{3}\left(\frac{9}{4}\right)-2 & \stackrel{?}{=} 3\left(2-\left(\frac{9}{4}\right)\right)-\frac{1}{2} \\ \frac{9}{2}-\frac{15}{4}-2 & \stackrel{?}{=} 6-\frac{27}{4}-\frac{1}{2} \\ \frac{18}{4}-\frac{15}{4}-\frac{8}{4} & \stackrel{?}{=} \frac{24}{4}-\frac{27}{4}-\frac{2}{4} \\ -\frac{5}{4} & =-\frac{5}{4} \end{aligned}$

Steps
 Discussion

\square
Model 2: Solving a Literal Equation for a Given Variable

Solve the following literal equation for r :

$$
\frac{7}{3}-2 r w=\pi r
$$

Step 1 Choose the variable to solve for

Step 2 Clear parentheses

Step 3 Clear fractions

The variables are r and w. The symbol π is a constant. We are to solve for r.

There are no parentheses.
$\frac{7}{3}-2 r w=\pi r$
LCD is 3
$7-6 r w=3 \pi r$

Step 4 Simplify

Step 5 Isolate the variable
There is nothing to simplify.

$$
\begin{aligned}
& 7-(6 r w)=(3 \pi r) \\
& 7=3 \pi r+6 r w \\
& 7=(3 \pi+6 w) r \\
& \frac{7}{(3 \pi+6 w)}=r \\
& \frac{7}{3(\pi+2 w)}=r \quad \text { or } \quad r=\frac{7}{3(\pi+2 w)}
\end{aligned}
$$

Step 6 Validate

$$
\begin{aligned}
& \frac{7}{3}-2 r w=\pi r \\
& \frac{7}{3}-2\left(\frac{7}{3(\pi+2 w)}\right) \cdot w=\pi\left(\frac{7}{3(\pi+2 w)}\right) \\
& \frac{7}{3}-\frac{14 w}{3(\pi+2 w)}=\frac{7 \pi}{3(\pi+2 w)} \\
& \frac{7(\pi+2 w)-14 w}{3(\pi+2 w)}=\frac{7 \pi}{3(\pi+2 w)} \\
& \frac{7 \pi+14 w-14 w}{3(\pi+2 w)}=\frac{7 \pi}{3(\pi+2 w)} \\
& \frac{7 \pi}{3(\pi+2 w)}=\frac{7 \pi}{3(\pi+2 w)}
\end{aligned}
$$

Addressing Common Errors

2.2

The following table shows some of the most common errors that learners tend to make with the kinds of problems covered in this section.

ERROR: Incorrect use of the Distributive Property to remove parentheses

Incorrect Process

$$
\begin{aligned}
3 x-(2 x+4) & =-2 \\
3 x-2 x+4 & =-2 \\
x+4 & =-2 \\
x & =-6
\end{aligned}
$$

Correct Process

$$
\begin{aligned}
3 x-(2 x+4) & =-2 \\
3 x-2 x-4 & =-2 \\
x-4 & =-2 \\
x & =2
\end{aligned}
$$

Resolution

Remove the parentheses, correctly using the Distributive Property.

Validation

$$
\begin{aligned}
& 3 x-(2 x+4)=-2 \\
& 3(2)-(2(2)+4) \stackrel{?}{=}-2 \\
& 6-(4+4) \stackrel{?}{=}-2 \\
& 6-8 \stackrel{?}{=}-2 \\
& -2=-2
\end{aligned}
$$

ERRDR: Incorrect use of the Addition Property of Equality

Incorrect Process

$$
\begin{aligned}
3 x+7 & =11 \\
3 x & =18 \\
x & =6
\end{aligned}
$$

Resolution

Correct use of the Addition Property of Equality by subtracting 7 from both sides.

ERRDR: Incorrect use of the Addition Property of Equality (con't)

Correct Process

$$
\begin{aligned}
3 x+7 & =11 \\
3 x & =4 \\
x & =\frac{4}{3}
\end{aligned}
$$

Validation

$$
\begin{aligned}
& 3 x+7=11 \\
& 3 \cdot\left(\frac{4}{3}\right)+7 \stackrel{?}{=} 11 \\
& 4+7 \stackrel{?}{=} 11 \\
& 11=11 \checkmark
\end{aligned}
$$

ERRDR: Incorrect use of the Multiplication Property of Equality

Incorrect Process

$$
\begin{aligned}
3 x & =5 \\
x & =15
\end{aligned}
$$

Resolution

Use the Multiplication Property of Equality correctly by multiplying both sides of the equation by $\frac{1}{3}$

Validation

$$
\begin{aligned}
& 3 x=5 \\
& 3 \cdot\left(\frac{5}{3}\right) \stackrel{?}{=} 5 \\
& 5=5 \checkmark
\end{aligned}
$$

$$
\begin{aligned}
& 3 x=5 \\
& \frac{1}{3} \cdot x=\frac{1}{3} \cdot 5 \\
& x=\frac{5}{3}
\end{aligned}
$$

ERRDR: Incorrect use of Order of Operations

Incorrect Process

$$
\begin{aligned}
4+2 x \cdot 3 & =18 \\
6 \cdot 3 x & =18 \\
18 x & =18 \\
x & =1
\end{aligned}
$$

Correct Process

$$
\begin{aligned}
4+2 x \cdot 3 & =18 \\
4+6 x & =18 \\
6 x & =14 \\
x & =\frac{14}{6}=\frac{7}{3}
\end{aligned}
$$

Resolution

Use the Order of Operations correctly.

ERROR: Ignoring a sum of zero

Incorrect Process
$3 x+13=7$
$3 x+6$
$x=2$

Resolution

Leave the 0 on the right side of the equation.

Correct Process

$$
\begin{aligned}
& 3 x+13=7 \\
& 3 x+6=0 \\
& 3 x=-6 \\
& x=-2
\end{aligned}
$$

ERROR: Adding unlike terms

Incorrect Process	
$4+2 x$	$=18$
$6 x$	$=18$
x	$=3$

Correct Process

$$
\begin{aligned}
4+2 x & =18 \\
(-4)+4+2 x & =(-4)+18 \\
0+2 x & =14 \\
2 x & =14 \\
x & =7
\end{aligned}
$$

Resolution

Use the Addition Property of Equality by adding (-4) to both sides.

Preparation Inventory	OR Here's my question...
I can... \square \square isolate a variable in an equation. \square \square remove parentheses from an equation. \square \square clear fractions in an equation. \square \square solve a linear equation. \square \square solve a literal equation for a given variable. \square	

1. How do you determine which variable to solve for?
2. How do you clear the fractions in an equation?
3. Why eliminate parentheses when solving a linear equation?
4. What are your strategies for isolating the variable term without making a mistake?
5. When isolating the variable, why do you divide both sides of the equation by the coefficient of the variable?
6. How do you make sure that you have isolated the chosen variable correctly?
7. How is isolating a variable different from solving a linear equation?
8. What is the difference between a literal equation and a linear equation?
9. How do the solutions to $2 x=4 x-2 x$ and $2 x=4+2 x$ differ?

Demonstrate Your Understanding

Solve each literal equation for the indicated variable.

1. Solve for a : $2 a+3=7-3(2-5 a)$
2. Solve for $x: 5(x-3)+4=-7+3 x$
3. Solve for $x:-2(x-5)+\frac{3}{4}=4 x-\frac{5 x}{3}$
4. Solve for r : $5-3 a+4=3-2(a+r)-7$
5. Solve for $y: 2(x-3)=5-3 x+y+5 x$
6. Solve for $t: 2 x-5 t=3(t-4)+7$

Create and Solve the Hardest Problem 2.2

Your Hardest Problem

Problem Solution

What makes a problem with basic equations a hard problem to solve?

Identify, Describe, $£$ Correct the Errors

Solve the problem correctly in the second column. In the third column, identify and describe the error you found in the worked solution.

Problem 1
Solve for x : $x+5=3(4-2 x)$
Worked Solution (Find the error!)
$x+5=3(4-2 x)$
$x+5=12-2 x$
$3 x=7$
$x=\frac{7}{3}$

Correct Process

Problem 2
Correct Process

Problem 3

Solve for t :
$-3^{2}+4 s+5 t=6 s-5 s-4(s+3-t)$

Worked Solution (Find the error!)

$$
\begin{aligned}
-3^{2}+4 s+5 t & =6 s-5 s-4(s+3-t) \\
9+4 s+5 t & =6 s-5 s-4 s-12+4 t \\
9+4 s+5 t & =-3 s-12+4 t \\
4 s+3 s & =-12+4 t-9-5 t \\
7 s & =-12-9+4 t-5 t \\
7 s & =-21-t \\
s & =-3-\frac{t}{7}
\end{aligned}
$$

Problem 4
Solve for y :

$$
\frac{3}{y}-4=3
$$

Worked Solution (Find the error!)

$$
\begin{aligned}
\frac{3}{y}-4 & =3 \\
3-4 y & =3 \\
-4 y & =0 \\
y & =0
\end{aligned}
$$

1. What prior knowledge did you find useful for learning the material in this section?
2. How did you learn to distinguish equivalence for expressions from equivalence for equations?
3. What are the key questions to ask when solving a linear equation?
