Methodology
 Calculating the Linear Regression Equation

Scenario: The following data set includes the WHIP ratio and the number of wins for American League teams during the 2013 MLB season. WHIP corresponds to the number of walks plus hits per inning pitched. The higher a team's WHIP, the worse the performance of the pitchers. What is the likely WHIP ratio for a team that had only 50 wins during the season?

Team	WHIP	Wins		Team	WHIP	Wins
Baltimore	1.32	85		Minnesota	1.41	66
Boston	1.30	97		NY Yankees	1.31	85
Chicago Sox	1.33	63		Oakland	1.22	96
Cleveland	1.33	92		Seattle	1.33	71
Detroit	1.25	93		Tampa Bay	1.23	92
Houston	1.49	51		Texas	1.28	91
Kansas City	1.27	86		Toronto	1.34	74
LA Angels	1.38	78				

Step	
1. Define x and y	
2. Plot the points	
3. Calculate the statistics	
4. Calculate the	
z-scores	
5. Multiply the	
z-scores	

Step	
6. Calculate r	

